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ABSTRACT

A bifurcation theorem is proved for odd potential operators. The
operator equation (*) f'(u) = Lu + H(u) = \u is treated where X\ __g'lR“» .
Snd u ¢ E, areal Hilbert space. A shaLrL;;Nc;-ehscription is give?xtgfﬁtol{‘e
structure of the set of solutions of (*) near a bifurcation point as a
function of }Z A crucial role is played here by a notion of topological
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index alternative to other indices used in critical point theory and the

properties of this index are developed in some detail.

e S

AMS (MOS) Subject Classifications: 47H15, 49F99, 55C99, 58E05

A
Key Words: bifurcation, odd potential operator, topological iadex, &R ﬁ\‘
critical point, deformation theorem, minimax )
Work Unit Number 1 (Applied Analysis) ; g
'-.\ e
e S
\ b‘ //

*This research was sponsored in part by the Office of Naval Research under
Contract No. N00014-76-C-0300, by the U. S. Army under Contract No.
DAAG29-75-C~0024, and in part by the National Science Foundation under
Grant No. NSF MC876~06373. Any reproduction in part or in full for the
purposes of the U. S. government is permitted.

AR e

W,'wn, v




R

BIFURCATION FOR ODD POTENTIAL OPERATORS AND AN
ALTERNATIVE TOPOLOGICAL INDEX

*
Edward R. Fadell and Paul H. Rabinowitz

§ 1. Introduction

In several recent papers [1-5], bifurcation theorems have been
proved for potential operators. The purpose of this study is to prove a
sharper result of this nature for odd potential operators. In doing so we
will employ a topological index alternative to the notions of genus,
Ljusternik -Schnirelman category, etc., which may also be of use in
other problems.

To describe our work more fully, let E be a real Hilbert space and
Q a neighborhood of 0 in E. Suppose f is a twice continuously
Frechet differentiable real valued mapon Q, i.e. fe CZ(Q, R) with
f(0) = 0. Some standard remarks are in order. The Frechet derivative
of f at ue Q, f'(u), is alinear map from E to R so f'(u) ¢ E',
the dual space of E. Since E is self dual we can and will interpret
the map u — f'(u) as amap from E to E. We further assume

f'(u) = Lu + H(u) where L is linear and H(u) = o("u") at u = 0.

I."I‘hls research was sponsored in part by the Office of Naval Research under
Contract No. N00014-76-C~0300, by the U. S. Army under Contract No.
DAAG29-75-C-0024, and in part by the National Science Foundation under
Grant No. NSF MCS876-0637 3. Any reproduction in part or in full for the
purposes of the U. S. government is permitted.
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For \ ¢ IR, consider the equation

(1.1) f'(u) = \u .

A solution of (1.1) is a pair (A\,u) ¢ R X E. Our above assumptions
imply {(\,0) I\ « R} are solutions of (1.1) and they shall be referred

to as the trivial solutions of (1.1). A trivial solution (pu,0) is called

a bifurcation point if every neighborhood of (u,0) contains nontrivial
solutions. It is well-known and easily shown that a necessary condition
for (u,0) to be a bifurcation point is that p ¢ o(L), the spectrum of

L. Under mild additional hypotheses, this necessary condition is also
sufficient. (See e.g. [5] for references).

In some applications, e.g. to buckling problems in elasticity theory,
solutions of (1.1) represent the possible equilibrium states of a physical
system depending on a parameter \. It is therefore of interest to study
the solution set of (1.1) as a function of \. Moreover in such problems
it is often the case that f is even and therefore solutions of (1.1) occur
in pairs (X, £u). Our goal here is to give lower bounds for the number
of nontrivial solutions of (1.1) near a bifurcation point as a function of
x» when f is even. Our main result is:

Theorem 1.2: Let E be a real Hilbert space, € a neighborhood of 0
in E, and f e CZ(Q, R) where f is even and f'(u) = Lu + H(u)
with L linear and H(u) = of ||u|l) at u = 0. Suppose u € o(L)

)
is an isolated eigenvalue of L of multiplicity n < ©. Then either (i) (u,0)




P

is not an isolated solution of (1.1) in {u} X E or (ii) there exist left

and right neighborhoods, Jt and Jr, of p in R and integers k, m >0

such that k+m>n andif X\ € 9
~

least k (Msp. m) distinct pairs of nontrivial solutions. Moreover

' (resp. Jr), (1.1) possesses at
as \ =, these solutions converge to (u,0).

Remark 1. 3: Either Jl or Jr may be empty. A characterization of k
and m will be given in the course of the proof of the theorem.

Theorem 1.2 improves earlier results in this direction due to
Clark [ 3] and Rabinowitz [ 5]. Other work on (1.1) for f even has been
carried out by Bohme [1] and Marino [ 2] who studied the solutions of (1.1)
near (u,0) as a function of p = "uu They showed in particular that
under the hypotheses of Theorem 1.4, for each p > 0, there are at
least n distinct pairs of solutions (\(p),+ uip)) of (I.1) having
||u(p) Il = p and (\(p),u(p)) - (4, 0) as p = 0. Thus Theorem 1.2 is a
natural complement to the Bohme-Marino result. We suspect that there
is a better approach to (1.1) by means of which both Theorem 1. ¢ and the
p dependent result may be obtained simultaneously.

The proof of.'l'heorem 1.2 will be given in §2. In brief the main
steps are: (1) Use a standard argument to reduce the problem of solving
(1.1) near (u,0) to that of determining the critical points (with respect
to v) of a function g(\,v) defined near (u,0) in R X an;

(2) Work in an appropriately defined neighborhood, Q, of 0 in R

to construct several families o’ sets I', in 6 and study their properties;

J
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(3) Minimax g(\,v) over each of these families of sets thereby produc-
ing a set of numbers; (4) Verify that each of these minimax values is a
critical value ot g(\,+) and that we obtain the required number of
critical points.

To define the sets in (2), a notion of topological index is introduced
which plays a crucial role there and is of independent interest. To avoid
unduly interrupting the proof of Theorem 1.2 in §2, we state a lemma in
§ 2 which asserts the existence of an index with the properties we require
and delay the definition of the index and development of its properties
to §3. The relatio.nship of this index to others that have been employed
earlier in critical point theory such as Ljusternik~Schnirelman category
[6], coindex [7], genus [8] [9], and the indices of Yang [10-11] will
also be discussed in § 3.

The authors acknowledge with thanks several helpful conversations
with Charles Conley. In particular we are indepted to him for a sugges-

tion which led to the final form of Theorem 3. 14.
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§2. The Main Theorem
In this section we will carry out the proof of Theorem 1.<4. To
begin, observe that although E may be infinite dimensional, we can
reduce (1.1) to a finite dimensional problem in a standard fashion using
the method of Lyapunov-Schmidt. This has been done already e.g. in
[ 5] but since it is brief we will include it here. Let N = N(L - ul),

1 denote its orthogonal complement

the null space of L - ul andlet N
in E. Since N is n dimensional, we can identify it with Rr".
If ueE u=v+w with ve N and weNi. Letting P and P‘L
denote respectivelly the orthogonal projectors of E onto N and N‘L,
we see (1.1) is equivalent to the pair of equations:
(i) (u=x)v+PH(v+w)=0

(2.1)

(ii) (L - \I)w + PTH(v + w) = F(, v, w) = 0 .

L}

Note that F(u,0,0) = 0 and the Frechet derivative of F with respect
to w at (p,0,0), Pw(“,o,o) = L - uI which is an isomorphism from

Nl

to N». Consequently by the implicit function theorem, (2.1) (ii) can
be solved for w = ¢(\,v) in a neighborhood, 6, of (u,0) ¢ RXN

with ¢ ¢ Cl(s,NJ'). Since f is even in u, it follows that ¢(\,v)

is odd in v. Moreover since H(u) = o ||u||) at u =0, (2.1)(ii) shows
e(\,v) = ~(L - \I)-IPJ‘H(V + o(\,V)) = olllvll) at v = 0 uniformly for A

near p (where the inverse is relative to Nl). Thus solving (1.1) for

(\,u) near (u,0) in R XE is equivalent to solving (2.1) (i) for (\,v)

near (u,0) in IR X N.

LGP e A

s




.

The next step in the proof is to define
A 2 2
(2.2) g, v) = (v +e(x,v)) - ‘Z‘(HVH + lotn, v 1) .

Note that g isevenin v since f isevenand ¢ isoddin v. A
simple computation shows that for fixed \, critical points of g are
solutions of (2.1) (i). Thus to prove Theorem 1.2, it suffices to determine
lower bounds for the number of critical points of g(\,:) near v = 0
for N\ fixed near u.

From (2.2),

(2.3) gv(\,v) = (p = \)v + PH(v +¢(\,V)) .

The right hand side of (2. 3) is continuously differentiable. Hence
gh,v) is a C2 function of v near v = 0 even though ¢(\,v) and
f(v + ¢(x, v)) are only continuously differentiable in v. Consider the

ordinary differential equation:

dg
e (“v ¢)
(2. 4) dt v

$(0,x) = x
for x near 0 in N. If v = 0 is notan isolated critical point of
g(p,v), then we obtain (i) of Theorem 1.2. Thus now and henceforth
we can assume there is a neighborhood, V, of 0 in N such that 0

is the unique critical point of g(u,v) in V.

Lemma 2.5: There is a constant ¢ > 0 and a symmetric open neighborhood _

Q of 0, QCV such that 6 is compact and




1° 1f xeQ la(u,x|<ec.
2° If xeQ, then Y(t,x) e Q for all t satisfying

la(u, wt, )| < c.
57 8 e a0 ,g(p., x)| = ¢ or W(t,x) € 9Q for all t such

that [g(p, ¥(t, %)) | < c.
Proo:: The-proof of Pemma 2.5 can be found in [ 5]. Q is simply the
union of all orbit segments {(t,x), for x appropriately chosen near 0,
which lie in g(p, -)_1 (-c,c) for c¢ =ufficiently small.
Remark 2.6: For future reference observe that if x ¢ 6, the orbit {(t, x)
can only leave Q by crossing g(u, ) (-c). Note also that
(x« Q| g(m, X) = c} may be empty. This occurs when g(p, ') has an
isolated local maximum at v = 0. Similarly {x ¢ 6 I g(p, x) = -c}
may be empty.

Given the existence of Q, we obtain a standard sort of "deforma-

tion theorem". For z ¢ R, let l\z = {%:¢ 6'9(x,x) <z} and
K, = {(xeA lah,x =z g Kx =0}
Lemma 2.7: If z ¢ R, e > 0, and U is any neighborhood of l&z,

then there exists an & ¢ (0, el) and an ne¢ C([0,1] XQ, Q) such that:

1° n(t,v) is odd in v.

2° n(t,v) = v if v/q(k,-)-l[z-el,z+el].

Pyt n(t,v) V a homeomorphism of 6 te n(t, 5) foreach t e« [0,1].
o

4 n(l,Ax’ g4e \U) C Ay z-e’

5©

If K\, =® n(l, l\,zn) < Ax’ e
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Proof: This lemma is the same as Lemma 1.19 in [ 5]. It is in the proof

of this lemma that the special features of Q play a role.

Next we require a suitable notion of index. We identify N with

n n

R and set .39(/) = {x e R Jx - yl < p}. Let & denote the set of
compact subsets of an\{O‘ which are symmetric with respect to the
origin. IN will denote the non-negative intcgers.
Lemma 2.8: There exists an index theory, i.e. a mapping & = IN,
A -+ Index A, possessing the following properties:

1O

If A=¢, IndexA=0; if A#¢, IndexA>); if A= {x,-x},
Index A‘ = 1.
2 If A,Beg and there is an odd map ¢ ¢ C(A, B), then
Index A < Index B. If § 1is also a homeomorphism of A onto
B, then Index A = Index B.
3~ Index (A U B) < Index A + Index B.
4 If Ace, thereexistsa 6 >0 and auniform neighborhood
of A, N6(A) = {xe R"| |x - Al <8} such that
Index Nb(A) = Index A.
5 If U is a symmetric bounded open neighborhood of 0 in
R", Index aU = n.
Let p>0, Keg with Kﬂ-B;(F)=¢. Let >0 and suppose
0:Kx[0,7] - an\{O} is an imbedding (i.e., © is a one-one

mapping) such that 6(x,0) = x, x ¢« K and 6(:,t) {s odd

on K for each t. Then, if e(Kx{T})CBp(O),

BEE >




Index(0(K x [0, 7]) N aBp(O)) = Index K .

We remark that it is the need for an index theory satisfying 6°
that requires us to go beyond the usual indices used in critical point
theory, in particular, genus or Ljusternik-Schirelman category. We
leave the precise definition of Index and the verification of its basic
properties until § 3 and proceed now to complete the proof of Theorem 1.2
making use of Lemma 2.8.

Let 8" = (x ¢ V\ {0} [¢(x,t) C V forall t>0)} and
S = {xeV\{0}|u(x,t) CV forall t<0}. Itis not difficult to see
that either S+ or. 8 is nonempty [ 5]. In fact both are nonempty
unless v = 0 is an isolated local maximum or minimum for g(u,-). Let
T = 8" N 5Q and T = 8" N 5Q. The proof of Theorem 1.2 is now a
consequence of the following three results.
Theorem 2.9: Suppose Index T = k>0. Then there is a left neighborhood
I, of p such that for each X ¢ Iy g(\,*) possesses at least k
distinct pairs of nontrivial critical points. These points converge to 0
as \ ~pu .
Corollary 2.10: Suppose Index T+ = m > 0. Then there is a right neighbor-
hodd I, of u such that for each \ ¢ "r' g(x, ') possesses at least

m distinct pairs of nontrivial critical points. These points converge to

+
0O as \ -y .

Lemma 2.11: Index T +Index T' > n.

1
O
]
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To establish Theorem 2.9, we require several families of sets, B
which are constructed next. Suppose Index T = k. For KC T we
define @(K) = {Mt,x)](t,x) € (~©,0) XK}, i.e. we cone K over 0
using the flow (. Now let F = {x ¢ C(a, 6) IX is odd, one to one,
and x(v) =v if veT }. For 1<j<k, define

G). = {x(®(K)| x €3, KC T, and Index K>} .
Observe that 6 ¢ 3 and A ¢ Gj implies that 6(A) ¢ Gj. Finally
for 1<j<k, define
f‘}_ = {mIAe Gq for some q, j<q<k, Ye €, and IndexY<q-ij}.

Lemma 2.12: The sets f’j possess the following properties:

O

1 e & j - 1.
1 el g 1EISk=1
27 X €F and B e I"j, then x(B) e Fj.
3° If Be I’j and Ze¢ with Index2<s<j, then B\Z e R

J=Ss

Proof: 1° is obvious. To verify Zo, let Be I“),. Therefore B = A\ Y

with A e Gq, Yee, and Index Y<q-j. If X € &, then

x(A\Y) = x(A\Y) = x(A)\x(Y). But x(A) € Gq by an above remark,
x(Y) € 8, and Index x(Y) = Index Y by 2° of Lemma 2.8. Hence

x(B) € I‘j. Finally to prove 30, let B=A\Y asin s Therefore

B\Z = A\Y\Z = A\(Y U 2). Since A « Gq and Index (YU 2)<q-j +s

=q-(j~s) by3°of Lemma 2.8, it follows that B\Z e F’_S.

Proof of Theorem 2.9: Define

(2.13) ¢, = inf max g(\,v), 1<jczk.
Af Pj V€ A
-10~
B S gt




By 1° of Lemma 2. 12. crslip

| <+'+ <¢, . We will further show:

2 k

(1) S > 0; (ii) cJ is a critical value of g(\,:) with a corresponding

critical point in Q. (Since ¢, > 0, this critical point is nontrivial).

1

(Hi) Haogan s wey = d, (i.e. d is what we might call a

j+l j4p
degenerate critical value of g(\, *)), then Index l&d >p. (iv) As
A - r-, ~gny critical points corresponding to cj, 1 <j <k, converge
to v=0. By 1° and 2° of Lemma 2.8, if Index A>1, A contains
infinitely many distinct pairs of points. Hence Theorem 2.9 is a

consequence of (ii) - (iv).

To prove (i), observe first from (2. 2) that
TR ¢ . L
(2.14) g(n,v) = 552 IV + S((L - xDe(n, v), o1, v)) + B(v + o(x, V))

where (-,-) denotes the inner produce in E, h' = H, and h(0) = 0.
Since o(\,v) = o ”v“) at v = 0 uniformly for X near u and

h(u) = of "u“ Z) at u =0, the dominating term in g for v near 0
is

- 2
“—2—)‘ ”V" . Therefore there isa p >0, p depending on X\, such

that for X < p and 0< llvﬂ < py
(2.15) an,v) 2 2 (vl

We can further assume Bp(O) N 8Q = ¢. Now choose any B e I Then

I
B=x(®(K)\Y where KC T, IndexK=q>1, Ye&, and IndexY<q - l.
For 7, dependingon yx and K, sufficiently large, x(y(-7,K)) C Bp(o).
By 6° of Lemma 2. 8,

(2.16) Index x(¢([ -7,0] xK)) N aBp(o) = Index K = q .




Now 2° and 3° of Lemma 2.8 together with (2.16) show

(2.17) Index B N aap(o) = Index| x(®K)) N aap(o)l\\(;_
> Index x(®k)) N 8Bp(0) -IndexY>g-(g-1)>0.
Therefore lO of Lemma 2.8 and (2.17) yield that B ) aBp(O) # . Hence

(2.18) max g(\,v)> min g(\,v) 2> u_;_h pz

ve B Vl=p
via (2.15). Thus clzf(p-x)p2>0 by (2.18).

To prove (ii), suppose that c, is not a critical value of g(x, ).

j

Then by Lemma 2.7 with z = cj and £ <z, thereisan ¢ ¢ (O,el)

and a mapping 6(v) = n(l,v) € 0(6,6) such that 6 isoddin v and
(2.19) e“\,cjﬂ:) - A\,cj-s :

For \ near u, g\,*)<0 on T . Hence by 2° and 3° of Lemma 2.7,
8(v) = v for ve T and © isl-1 on 5 Therefore 6 ¢ . Choose
Be I' so that

j

(2.20) max g(\,v) < cj +e.
veB

By 2° of Lemma 2.12, o(B) ¢ I‘j. Consequently

(2.21) max g(\,v)2c
v ¢ 6(B)

e
But (2. 21) contradicts (2.19) - (2. 20) so cj is a critical value of g(\,*).

A similar argument establishes (iii). Suppose Index KXd < P
By 4° of Lemma 2.8, thereisa 6 >0 50 that Index Nb“&d) = Index l&d < p.
Invoking Lemma 2.7 again with z = d and el < d, there exists an

e ¢ (0,e,) and an odd map 6(v) = n(l,v) ¢ 0(6,6) such that 6 ¢ 3 and
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Choose Be I' so that
Jtp

(2.23) max g(A\,v)<d+e=c,._ +¢e.
veB I+p

o T R o
By 3~ of Lemma 2.12, B\Né(de) € I“j+1 and by 2~ of the same lemma,

e(B\Nﬁ(K)‘d)) =M ¢ I*), a° Therefore

(2.24) max g(\,v)2d=c, , .
j+l
veM

But (2. 24) contradicts (2.22) - (2. 23).
Finally to prove (iv), observe that g(\,v) - g(u,v) uniformly for

ve Q as \ - u. Moreover &(T ) ¢ Fj for 1<j<k andif v e &(T),

g(p,v) < 0. Since O ¢ 0(T°),

max g(p,v) =0.
ve®(T )

Therefore as \ - p.-,

0< c]_(x) < max g(\,v)=-0.
ve®(T)

Thus if vj(x) is a critical point of g(\,*) in Q with g(x,vj(x)) = cj(x),
we can find a sequence A_ = so that vj(xs) - v with g(p,v) =0

and gv(p, v) = 0. But O {s the unique critical point of g(p,:) in 6
Hence as \ -y, v,,(x) - 0. The proof of Theorem 2.9 is now complete.

Proof of Corollary 2.10: Replace g(\,v) by =g(\,v). The result is

then immediate from Theorem 2.9.

«)3e




Proof of Lemma 2.11: The proof is based on that of Lemma 2.7 of [ 5].
Let p >0 with Bp(O) C V. By Lemma 2.5 with V replaced by Bp(O),
we can find a neighborhood Qb of 0 having the same properties as Q
with ¢ replaced by b. If v e aQb N gy, ~)—l(—b), there is a unique
T(v) > 0 so that g(u,¥T(v),v)) = -c. Moreover the map 6(v) = y(7(v),v)
is odd and is in C(aQ, N 9k, *)'(~b), 2Q N gl ) '(-c)) with
8(s” N aQb) = T . Since Index T = k, by 2° and 4° of Lemma 2.8,
there isa & > 0 so that Index (N6(T-) N 8Q) = k. We claim for p
sufficiently small, e(aQb N g(p, ')-l(-b)) C N6(T-) N 3Q. For otherwise
there exist sequences Py 0, bm -0, and R ¢ Bpm(O) such that
g(p, xm) = bm >0 and ¢(T(xm),xm) € 9Q but X 14 Nb(T—). Clearly
along a subsequence '.p(T(xm),xm) ~ye d9Q and y £ T . But since
X 0, T(xm) - o, Therefore vy ¢ T-, a contradiction, and we can
find p as above.
By 2" of Lemma 2.8,

(2.25) Index S N 8Q, = Index T =k<

Index( aQb N g(y,: )‘1(-b)) < Index N6(T_) NagQ=k.

Hence all inequalities in (2. 25) are equalities. Similarly

(2.26) Index(aob N g(p, ')-l(b)) = m = Index T+ 3

If ve aQb\g(p, - )-l(-b), there is a unique t(v) < 0 so that

g(p, Wt(v),v)) = b. It follows that €&(v) = y(t(v),v) is a continuous

odd map of aQb\g(p, -)-l(-b) onto aQb N g(u, -)-l(b). Hence by 2°

of Lemma 2.8 again,

e




(2.27) Index(aob\g(u. -)-1(-b) <

Index( aQb N g(u, -)-l(b))

-1
m < Index( aQb\g(u. <) (-b)).
Thus we have equality in (2.27). Combining (2.25), (2.27) and 3° and
50 of Lemma 2.8 yields

(2.28) n = Index 5Q, < Index(5Qy \a(k, -) (b)) +
Ty -~

—

+ Index(aQb N g(p, -)-l(-b)) =m+k

and the proof of Lemma 2.1l is complete.
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§ 3. Definition and Properties of Index

The concepts of (Ljusternik-Schnirelmann) category as well as that
of genus (called B-index by Yang [10] and coindex by Conner-Floyd [7])
have played a useful role in problems involving the existence of critical
points. We develop here an alternative notion which is equivalent in
a restricted category to the index introduced by Yang [11], and which
has the properties usually enjoyed by these notions as well as one
important additional one (Theorem 3.12 below). These properties were
used in §2 and summarized in Lemma 2.8, with 6° corresponding to
Theorem 3.12 below.

We work with the category C of compact metric spaces which
admit a free Zz—action. More precisely, an object of C is a pair (X, T)
where X is a compact metric space and T : X - X is a fixed point
free homeomorphism of period 2. The morphisms of C are equivarient
maps. i.e. given (X,T) and (X',T') in ¢ a morphism f:(X,T) - (X', T')
is a (continuous) map f : X - X' such that f(Tx) = T'f(x), for x e X.
Thus, compact symmetric subsets of a normed linear space are then
objects in  and odd maps between such subsets are morphisms in C.
A fortiori, then the category € of symmetric subsets of some an\O
is included in .

Given (X, T) € C, X = X/T is the corresponding orbit space and

themap q: X - X which identifies x and Tx is a 2-fold covering map.




@0
As usual, we will denote by S , the direct limit of the sequence

of spheres of ascending dimension S1 - S2 = S3 S i ol g
L o]
o0 k ® )
8-=2 L) 5. 8 admits the antipodal action and P , the corresponding
k=1

infinite dimensional projective space, is on one hand the orbit space
0
S /T, and on the other, the direct limit of the projective spaces
- S iy
Pl CP CP C-.-., Itis easy to see that there exist equivariant maps

f:X - Sm (in fact into SN for N large) and any such map induces

a diagram

A.8°

0

HKie—— %

S
Lp
where the vertical maps are the 2-fold covering maps and f is naturally
induced by . We call any such (f,‘f.) a classifying map for (X,q, ;().
Remark 3.1: Both s° and P* receive the weak (= direct limit,
= inductive) topology. For example, U C Sw is open if, and only if
un Sk is open in Sk forall k =1,2,... . Itthen follows easily
that every compact subset of S°°(P°°) lies in some Sk(Pk) for k
sufficiently large.

Remark 3.2: We employ éech cohomology with ZZ coefficients and
the notation Hq(X) stands for H“(x, Zz). We also use the fact that
the ZZ cohomology of the real projective space Pn is the polynomial

ring over ZZ on one indeterminate u e Hl(Pn), truncated by the relation
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unH = 0. Recall also that the inclusion map i : Pn - Pn“ indices

n+l) . Hq(Pn) for g <n.

. q
an isomorphism i : H(P
We now give the definition of index which we will employ. Let
(X, T) denote an object of €, as above, and let (f,f) denote a

classifying map and N chosen so that f(X) C SN. Then set ¢(f, f)

~ %

equal to the max k such that f (uk) # 0 where

~ % ~

f :Hk(PN) - Hk(X)
is induced by T X - PN. Observe that ¢(f, ?) is independent of N
and that o(f, f) < dim X.
Proposition~Definition 3. 3: Set

index X = o(f, f)

for any classifying map (f, ?), [ or alternatively for any equivariant
map f:X - Sw]. Then, index X is independent of the choice of (f,f).

Proof: In order to prove independence of (f,f) let (g,a) denote

another classifying map and choose N such that

)l(—g—»sN x-ZygN
%-Lop™ %L .

We imbed X in the Hilbert cube Q“. If n:X-Q" is such an
imbedding, then ¢ :X - QY x Q¥ defined by ¢(x) = (x, Tx) is an
equivariant imbedding using the action S(u,v) = (v,u) on Q“’ x Q“.

Recall now that «(X) in Q” can be approximated by polyhedra in the




following sense: for every € > 0 there is a set Ke such

2(X) C int K. C K CU_C Q“ where U, is the e-neighboriiood of X,
and Ke is homeomorphic to Pc x Ow where P€ is a finite g-iyhedron.
A simple modification of this yields the following

Lemma 3.4: For every € > 0 there is an invariant set Ke cg'ng,

(i.e. (u,v)e l(2 <==> (v,u) & Ke) on which 8 acts freely such that

(X)Cintk CK cU cQ*xqQ”
[ € 3
where Ue is the e-nghd of ¢(X) in Qw wa and l(e is homeomorphic
to Pe X Qm where Pe is a finite polyhedron.
Now, using the above lemma we may identify X with {(X) and
T with S, sothat XC Q“x Q”. Wwe may extend the equivariant maps
f and g to a neighborhood V of X in Qw X Qw and hence to

equivariant maps

F:K *SN G:K-—SN
€ €

where X C Ke CV and Ke is homeomorphic to Pe x Q°, as in the

above lemma. Now, we may appeal to the fact that Sw - Pw is a

~

universal principal 2Z.,-bundle to prove that F~ G : Ke - Pw. Alterna-

2

tively, V{orkmg separately on the components of Ke’ one shows that

o~ ~ ~ o0
F# = G# . ul(Ke) -—wl(P =

where F p and & p are the homomorphisms induced by F and “é, and

then this forces ;~G since P‘Io is a K(Zz,l) (see [12], pg. 427).

Hence, for a large positive integer M we have




frg i X - PM
~ % ~ % * M * o~ ~ ~
and hence f =g :H (P ) - H (X) and thus o(f,f) = ¢(g,9).
Remark 3.5: We adopt the convention that the index of the null set is -l
~%
and if X is a non-empty setin ¢ with f (u) = 0 above, then index
~ % k ~ % l
X = 0. Also, notice that f (u') = 0 implies f (u') =0 for 1> k.
We might also note here that a more inclusive notation would be
index (X, T) rather than index X, since T plays a vital role. However,
T is not usually displayed, by convention.
We now investigate the basic properties of this index.
Proposition 3.6: index X < dim X.
Proof: This is immediate because Hq(x) = 0 for g>dim X, where
dim X refers to the covering dimension of X [13].
froposition 3.7: If g :X =Y is equivariant, i.e. if g is a morphism
of the category ¢, then index X < index Y.

Proof: Let (f, ?) denote a classifying map for Y. Then, we have the

diagram

where (h = fg, h= TS) is a classifying map for X. If index Y = Kk,

then for j > k
Riw) =g f () =0

and hence index X < k = index Y.
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C 3.8: If XCY, then index X < index Y.
position 3.9: o ) e 2 T B Do
Pro ition 3 Let Kl KZ Kp Kp+1 denote a

descending sequence of compacta in ¢ with X = Kp and all receiving

their free Zz-action by restricting that of K . Then, for some po,

1
index Kp = index X, p > Py

Proof: We know that index X < index Kp for every p, since XC Kp.

Therefore, it suffices to show that for some Pyr index Kp < index X

N

o0
for p> po. Given an equivariant map f: X S C S , we may extend

f to a neighborhood (in Kl) of X and hence we may assume without

loss that f extends to F: Kl - SN L Sm. Let Fp = F|Kp and consider
the diagram
ey T
X—~_» K W SN
’p+l
T ~
ptl % I:pwkl
p+l
3 X 2 e »
where 1p Kp and jp«i—l Kp 1 Kp are inclusion maps. Then,

we have an induced diagram

q a q q,,N
1Y(x) —»Mn(xp)ﬁ-n(p)

~ %

where a = lim ip is an isomorphism using the continuity property of
~ P * . q9pN q,¥

Cech theory, p = um Fp and aep=f :H (P ) - H'(X). Suppose

~% k4l
now that index X = k. Then, since f (u ) =0 and a is an

l) = 0 for some Po and hence for

~%
isomorphism it follows that Pp (u“
0




every p> Py Thus, index Kp <k forall p> Py and the result follows.
Cor ry 3.10: If X e is a subset of an\{O}, there is a symmetric
polyhedron K in an\O such that X C interior K and index X = index K.
K may be chosen within any neighborhood of X and in fact K may

be chosen as a smooth n-manifold with boundary.
Proof: Given a neighborhood W of X choose a sufficiently fine

smooth triangulation of an\{O} and let K denote a regular neighborhood
of an appropriate subpolyhedron containing X.

soroll 3.1: If (X,T) e, then X may be equivariantly imbedded

in Q” xQ“ using the flip action S(u,v) = (v,u) on Q° x Q“. Identify-
ing X with its image in Qw X Qw and T with S, there is a compact
invariant set KC Q” x Q¥ such that X C int K, index X = index K and

K is homeomorphic to P X Q” where P is a finite polyhedron. K may
be chosen within any neighborhood of X.

Proof: Apply Lemma 3.4.

Proposition 3.12: Suppose X = AUB, with A B, and X in ¢ and
where A and B receive their free Zz-actions from X. Then,

index X < index A + index B +1 .
Proof: We will make use of the cup product in éech theory over Zz

(see [14], p. 288)

H'(x, 8) e, , HIX,B) - B*x,A U B) .
2




>
q and index X = k. Let (f,f) bea

~ ~

classifying map for X, with (fl’ fl) and (fz,fz) serving as classifying

Suppose index A = p, index B

maps for A and B, respectively, where f1 = f|[A and f2 = f|B.

Then, for N sufficiently large, we have the diagram

5 = u"(pY)
- - f2‘/ 1
-H"™(B) £ H™(R)

and exact sequences for pairs
SEede ~* i
oy X, B) 2 HT() 25 B 20 5™ H (X, 8) — - -

* ~ X
--—»Hm(X, B) —> P (x)—j—-v H (B)—-)Hnn+1 X, B)—-+
Since
0 = 1(upﬂ') = T*E*(upﬂ)

~ % ~ X~k
0= fz(uqﬂ) %3 - f (uqﬂ)
+ ~ o~ + ~ o~
we have x ¢ HF l(X, A), y ¢ H9 l(X, B) such that

* ~% p4] * ~% g+l
a(x) =1 (P, pi(y) = T ).
Now, using the naturality of the cup product;

~ o~

1Pk, a) @ HIM (X, B) —> HP1IYeX A U B)

Hpﬂ(i) ® Hq+1(§) sy l_lp+q+2(§)




we see that x Uy = 0 implies

~ % ~k  n4q+2
u q

0= ™Y o™y 2 1 4P

Therefore, k< p +q +1 and the proof is complete.

Proposition 3.13: If U is a bounded symmetric open set in IRmLl

containing the origin with boundary B = 3U, then
index B = n.
Proof: One considers, as usual, the odd map f:B - s" which takes

X to xS/ Hx " . This map induces an injection

T n9P" -1Y®), q<n.

~ K
The proof that f is an injection is more or les; classical and may be

effected by using the transfer map (see Dold [ 14, p. 309]) as follows.

+ +
First, we may assume that f is extended to an odd map f: R" S R 1

1

such that f-l(Sn) = B. If we let N F denote Rn+l\{0} with antipodes

identified then f induces ?:Nrw1 - Nn+l with ?—I(Pn) = E and

- 2 2 SE € ) e
flo.) =0 where o_ ¢ Hn+1(Nn .. \B) o . Hn

n+l .n+l, .n
n o RS
B P B P

alN

are fundamental classes over ZZ- Then, according to [14], there is a

transfer map (over ZZ)
f1 : 54B) - v
which acts as a right inverse for f :H (P ) - H(B). Thus, f is an
injection and this forces index B > n. Finally, since index B < dim B = n,
we have the desired result.
We now proceed to verify an important additional geometiric property

of index as defined above and which corresponds to e of Lemma 2.8.




adase

Theorem 3.14: Assume the following:

(1) Mn~l is a compact connected symmetric manifold in R™\ {0}
separating an into components U and V.

(ii) A is a symmetric compact subset of U.

(iil) ¢ :AX [0, T] = an\{O} is a symmetric imbedding
((-x,t) = -¢(x,t)) such that ¢(a,0) = a, ae¢ A and ¢AX 7)C V.

Then, if we set C = Vi) ¢(Ax[0, 7]), we have index C = index A.

The proof of this theorem will make use of the following result.
Proposition 3.15: Suppose N‘n is a manifold and X C N s a compact
subset of N" sep.aratlng Nn, say N“\x = UIV, sothat UNV= X.

n

Let A denote a compact space, I=[0,1], and ¢ :AXI-+N an

imbedding such that ¢(A X {0}) C U and ¢(A X {l1}) C V. If we set

C=@AxDNX, g = proj « v tolAXT) =&,
and go = glC, then
*
g, : H(A) - HY(O)

is injective (one to one) for all g > 0 (any coefficients).
Proof: There is no loss in identifying A and ¢(A X {0}) and also

assuming that ¢(a,0) = a, a € A. We introduce the notation:

B = ¢(AX]1)
A= UNgAXI)
B' = VN o(AXI)

and notice that

A' U B' = o(A XI), ANNB =C.
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Furthermore, the inclusion maps

A2 A U B, B-Laar i B

are homotopy equivalences and g, servesasa homotopy inverse

for a@. We also introduce the inclusion maps,

11 :A' -A' U B, iz : B' -A' U B!
jl:A'ﬂB'—oA, jz:A'ﬂB'-’B'
. < A . -- R!
kl : A=A kz :B-B'.
*
Then, il . kl = a and 12 . k2 = B implies the induced maps il
%

and i 2 on cohomology are both injections. Consider now the Mayer-

Vietoris sequence for A' U B',

— 5% U 3)—2» 8% A) ¢ BY(B) —1»HI(A' N B') —

*
where { = (i -1:) and n = j: +j:. This forces j :Hq(A‘) -qu(A' N B')

1’ 1

*
to be an injection as follows. Suppose jl(a') = 0. Then, for some

y « HY(A' U B') we have
t{y) = (a',0) = (ir(y), -iz(y))

X
and hence 1Z(y) = 0. This forces y = 0 and hence a' = 0. Now,

consider the retraction g

*
= gll of A' to A. Since glkl = idA, gl

1

is an injection and hence the diagram

*

a“(A-)-—’ 1A' n B)

KA

H (A)

-

A Sl AT 4l AT Wb e




%
shows that go is an injection.

Proof of Theorem 3.14: Let N" denote an\{O} with antipodal points

identified and apply Proposition 3.15 in Nn with X = Mn-1 as follows.

et ™
-1
g = proj, - ¢ to(AXI) - A
c=M2 paax.

Let A, C, g denote the corresponding objects in N" and by Proposition 3.15

~ X ~ ~
g : H(C) - HI(A)

is injective. Take a classifying map (f,?) for A and we obtain a

diagram

f N
—

Qile—0O

loz l Q
o o

> le—

f%

and f (u’) # 0 if, and only if, gof (u’) # 0 and the theorem follows.

t

—

N

Remark 3.16: Proposition 3.15 may also be employed to give an alternative
proof of Proposition 3.13.

We indicated at the beginning of this section that this notion of
index is equivalent in a restricted category to that introduced by Yang in [11].
We develop this further now.

Let ¥ denote the category whose objects are pairs (X,T) with

X a compact Hansdorff space and T a fixed point free involution on X,




and whose morphisms are equivariant maps. The following definition
is an equivalent formulation of Yang's index (see [11], §3.6).

Definition 3.17: Given (X, T) ¢ %, the Yang index of (X, T), denoted

by Yang index X, 1is the largest integer n such that for any equivariant
map f:X - Y, with (Y,S) ¢ ¥ arbitrary,

- ;( -~ H ?

o H (X ~H ()

~

is non-trivial, using éech homology with Zz-coefﬁcients, where X
and ~Y are the orbit spaces X/T, Y/S, respectively.
Proposition 3.18: For (X,T) ¢ C

Yang index X = index X .
Proof: The proof will make use of duality in Cech theory ([13], [15]) which
takes the following form. On the category of compact spaces X, there

are natural transformations ¢ and
S
) 2 (BY0) —> B (X)

which are isomorphisms for each X, where [Hq(x)]* is the dual over
ZZ of Hq(X). We also make use of the fact that if (Y, T) ¢ ¥, there
is a finite complex K which admits a free zz-actlon and an equivariant
map h:Y - K. K is, in fact, the nerve of an appropriate finite cover
of Y and h a barycentric mapping (see [11]).

Now, suppose (X,T)e¢C and (Y,S) ¢e¥ andlet f:X Y be an

equivariant map. Then we have a diagram




~ ~ E'3 ~
HIX) —2» [H9(%)] l»ﬂq(x)
* %* % *
f I (f) l f
~ ~ 3 ~
) 5 (B0 —eh (9
N * q
If f_+0 forevery Y, then thisis sofar Y =8 and f (u’) #0
e N
for 'Y = P. Thus, index X> Yang index X. On the other hand, to show
index X < Yang index X, suppose Y is chosen so that f, = 0. First
choose K as above and an equivariant map g : Y - K and then an
equivariant map h : K - SN for N sufficiently large. Now

’

(hgf), = h,9,f, =0 and hence (hg f)* = 0, where

(hgn':rIEY) ~ HUK) .
This shows, index X < Yang index X and the proof is complete.

Let us recall the notion of genus which may be derived from Yang's
notion of B-index (or the notion of coindex of Conner-Floyd). Given
(X, T) « ¥, B-index X is the minimum k such that X admits an equivariant
map f:X - Sk. Then, we have, for (X, T) ¢ €,
Yang index X = index X < B-index X .

Furthermore, for any symmetric compact subset X in a linear space,
we have (directly from definitions)

genus X = B-index X +1 .
It is, therefore, convenient to increase the index by 1 and define the

notion of Index X as follows.

Definition 3.19: For (X,T) ¢ C, set

Index X = index X +1 .

Bl =




Remark 3.20: Clearly then

Index X < genus X
and we note that in [10] Yang has an example of a symmetric imbedding
of a polyhedron K in IR4 such that

Yang index K = I, B-indexK = 2.

Since Yang index K = index K (by Theorem 3.17) we see that

Index K < genus K
so that the Index we have introduced may be strictly less than genus.

Finally one can translate the above relationships to those between
Ljsternik-Schnirelman category and Index using the equivalence between
genus and category in the appropriate setting (see [9)).

Lemma 2. 8 was stated in terms of "Index''. Basically the proposi-
tions we proved for "index' remain valid for "Index" with minor arithmetic
changes. For example,

(3.5)! X+# ¢ implies Index X>1 and Index (¢) = 0.

(3.6) Index X < dim X +1] .

(3.12)" Index (A U B) < Index A + Index B .

(3.13)* IndexB=n+1, where B is the boundary of a symmetric

bounded open neighborhood of 0 in anﬂ, e.g. Index s" = n+l, n>0.

Thus, the material in this section constitutes a proof of Lemma 2. 8.

~
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